ORGANIC
LETTERS

Boronate Titanium Alkylidene Reagents Vol. & No. 23

for Diversity-Based Synthesis of 43894392
Benzofurans

Gordon J. McKiernan and Richard C. Hartley*

Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland

richh@chem.gla.ac.uk

Received September 2, 2003
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Novel titanium benzylidenes (Schrock carbenes) bearing an arylboronate group are generated from thioacetals with low valent titanium species,
Cp.Ti[P(OEt)s],, and alkylidenate Merrifield resin-bound esters to give enol ethers. Treatment with 1% TFA gives 2-substituted (benzo[b]furan-
5-yl)boronates, and solid-phase Suzuki cross-coupling gives 2,5-disubstituted benzofurans. Steps in the syntheses of thioacetal substrates
include selective lithiation-boronation, hydrolysis of a MOM group without affecting a boronate ester, and cross-coupling with bis(pinacolato)-
diboron.

We have recently demonstratédhat titanium benzylidenes

2, bearing a masked oxygen or nitrogen nucleophile in the Scheme 1. Synthesis of Indoles and Benzofurans

ortho position, can be generated by the reduction of (\ Go,i Diversity

. 3 2 .
thioacetalsl® and used to convert resin-bound estgiato 4 eq. Cp,TIP(OEN.],

enol etherst (Scheme 1). The resulting enol ethdrseact Y A 7 A
with mild acid to give benzofurans or indolBsn high purity, PO~ THF, 4 AMS Rl O '
because any unreacted e@eemains attached to resin under ! &

these conditions. These solid-phase syntheses of bicyclic PG = protecting group o Iy /Q
heterocycles are traceléss that, theoretically, substituents Detshy = B 4O

are allowed at any site. Although we have used a range of ) _o
esters and a number of different titanium benzylidenes to et
generate small libraries of pure benzofurans and indoles, we RQ@R‘ CF3CO;H, CH,Cl, 1
felt that it would be desirable if extra sites of diversity could Y PG. R
be introduced by the titanium reagents. Unfortunately,-Cp 5X = 0, NR?, NBoc "
Ti[P(OEt)], reduces aryl bromides and aryl chloridesghich Traceless and High Purity
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We could find no examples of Schrock carbenes (nucleo- ||| NG

philic metal alkylidene® bearing organoboronates or orga-
notin moieties. Chromium-containing 1,1-bimetallics bearing

such groups were known and had been used to alkylidenate

aldehydeg, but they do not react with carboxylic acid
derivatives. Trimethylsilyl groups are tolerated in the titanium
alkylideneg and 1,1-bimetallicsthat alkylidenate estefs$.
However, unlike (alken-1-yl)trimethylsilanes, aryltrimeth-

ylsilanes are not substrates for palladium-catalyzed cross-

couplingst?

We decided that organoboronate functionality would be
the most useful for introducing diversity. Although Suzuki
cross-coupling€ of resin-bound halides or triflates are some
of the most common reactions in combinatorial library
synthesis? polymer-bound boronates have rarely been
employed. This is surprising as there are many more

commercially available aryl halides than arylboronates. The
few reported examples involve using resin-bound boronates

in polymer functionalizatiod? in standard solid-phase syn-
thesis?'% in soluble polymer-supported convergent synthe-

Scheme 2. Synthesis of Simple Boronate Substrate
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sis}® and as linkers that are cleaved during cross-coupling scale, began from 4-bromobenzaldehgdaldehyde8 was

reactions-’
Initially, we wished to determine whether a titanium

protected as tetramethyldioxola@eLithium—bromine ex-
change, reaction with triisopropylborate, and transesterifi-

alkylidene bearing an arylboronate group could be generatedcation of the resulting arylboronate gave acét® Reaction
from a thioacetal and used to alkylidenate esters. Thereforewith propanedithiol then gave the desired thioac@tdt is

we prepared thioacetdl in high yield from commercially
available boronic acié (Scheme 2). A cheaper route, which

important to match the acetal and boronate ester, as partial
transesterification of the pinacolatoboronate occurred in this

involved no chromatography and was amenable to multigram step when a 1,3-dioxane protecting group was used. Acetal
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protection was necessary as neither lithiatiboronation nor
Grignard formation—boronation were successful using the
1,3-dithiane formed from aldehyd®

Thioacetal7 reacted with 4 equiv of GFi[P(OEt)], to
give a titanium reagent, presumably titanium benzylidene
12, that converted Merrifield resin-bound estéacontained
in an IRORI macrokan into enol eth&B. Treatment with
mild acid then gave boronatk4 cleanly and in high yield
(based on resin loading of commercial Merrifield resin)
following solvent removal. We then investigated Suzuki
cross-couplings on solid support in DMF. A range of bases
(K3PQOy, KoCO;, TIoCO5, CsF, AgCO; and CsCQO;3) and
water—DMF mixtures (including anhydrous DMF) were
tested. Under the optimum conditions (1 equiv of water with
cesium carbonate as nucleophilic base), both electron-rich
p-iodotoluene and electron-popmitrophenyl iodide coupled
smoothly, and ketonekb and16 were isolated in high yield
and purity following cleavage from resin and solvent removal
(with no further purification required; see Supporting Infor-
mation for*H NMR spectra). We had previously shown that
benzylic thioacetals with aortho trimethylsiloxy group can
be used to make benzofurarsy we embarked on a synthesis
of benzylic thioacetal22 (Scheme 4). Methoxymethyl
protection of bromosalicylaldehydg& gave aryl bromidd.8,
which underwent cross-coupling with bis(pinacolato)dibo-
ront® 19 to give boronate20. The mild conditions reported

(18) For a similar procedure, see: Bouillon, A.; Lancelot, J.-C.; Collot,
V.; Bovy, P. R.; Rault, STetrahedron2002,58, 4369—4373.

(19) Ishiyama, T.; Murata, M.; Miyaura, Nl. Org. Chem.1995, 60,
7508-7510.
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Scheme 3. Synthesis of Simple Boronate Substrate
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Yields based on original loading of Merrifield resin

(pinacolato)diboron are expensive and in mass terms a large
amount of catalyst is used. Furthermore, the product boronate
20 was difficult to separate from boron-containing side
products. Therefore, we developed an alternative route.
Bromosalicylaldehydé&7 was converted into the correspond-
ing 1,3-dithiane, and the phenolic hydroxyl was protected
astert-butyldimethylsilyl (TBS) etheR4. The X-ray crystal
structure of this compound shows that the TBS group shields
the hydrogen atom at C2, so lithiatiatieboronation pro-
ceeds smoothly to give boron&2é following transesterifi-
cation. This contrasts with the MOM analogue of aryl
bromide24, which gives an intractable mixture of products
under the same conditions. Finally, removal of the TBS group
gave phenoPl1.

Thioacetal22, 23, and25 are all potential substrates for
titanium benzylidene formation. Indeed, titanium reagents
(presumably titanium benzylidene26), generated from
thioacetals22 and 25 using 4 equiv of Cpli[P(OEt)].,
benzylidenated Merrifield resin-bound estéfsa—cto give
enol ether®7. Treatment with mild acid then gave ketones

by Weyermann and Diederi¢hallowed selective hydrolysis
of MOM without affecting the boronate ester. Thioacetal 28, in the case of TBS protection, and benzofur2@svhen
formation then gave dithian21. Trimethylsilyl protection =~ TMS protection was used. The yield was moderate to good,
produced TMS ethe?2, while MOM protection with control ~ and compounds were isolated in excellent purity following

Scheme 4. Synthesis of Substrates for Benzofuran Formation
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solvent evaporationttd NMR spectra in Supporting Infor-
mation). Unfortunately, neither TBS nor TMS protection
could stand the cross-coupling conditions, so thioacz3al
was investigated as an alternative substrate.

Scheme 5. Solid-Phase Synthesis of Boronates
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Merrifield resin-bound esterdla—c reacted with the
titanium benzyliden80 generated from thioacetaBto give
enol ethers31 (Scheme 6). The alkylidenation reaction had
to be heated under reflux for good conversion to occur. It is

of the temperature to prevent opening of the thioacetal gavePossible that the MOM group coordinates to the titanium

acetal 23. Although high yielding, this route was not

atom in a precursor to benzylideB, stabilizing it so that

amenable to scale-up because of problems with the cross2 higher temperature is necessary for generation of the

coupling reaction: both the palladium cataf{ysand bis-

benzylidené? Cross-coupling followed by resin-washing and

(20) Weyermann, P.; Diederich, &.Chem. SocPerkin Trans. 12000

4231—-4233.
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evaporating the solvent gave benzofur&8sn high purity

Scheme 6. Solid-Phase Synthesis of Boronates without any need_ for further_ purification (§é«H NMR
360, TiCp, spectra in Supporting Information). Electron-rich arenes took
(pin)B | only 5 min to cyclize, while electron-poor aren8gac’,
OMOM 32bc’, and32cc'required 20 min exposure to acid.
0 oo OMOM In summary, we have developed novel boronate-containing
Q\O)J\Rj — (pin)B | titanium benzylidenes that allow the diversity-based synthe-
, reflux .
11 Q—O ]! sig?® of benzofurans.
aR' = (CH,),Ph
b R' = CH=CMe, 3
(i) 5 eq. Arl, 5 eq. Cs;CO;,
4 mol% Pd(PPhs)s, Table 2. Yields of Benzofuran83 from Ketones32
1eq. H;O, DMF, B0 °C,20 h
(i) 1% TFA, CH,Cl, Ar
O~_R’ R® a’, p-MePh b’, p-MeOPh ¢, p-NOzPh
Al
rmR' _ 10%HCHMeOH 4, a, Ph(CH>)» 90% 92% 54%
o b, Me,C=CH 95% 80% 96%
OMOM ¢, p-MeOPh 83% 87% 100%

33 see Table 2 for yields
= i 32 see Table 1 for yields
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gave ketone$2 in moderate to good yield (Table 1) and
excellent purity following solvent removal. Heating ketones ~ Supporting Information Available: *H NMR spectra of
32with 10% concentrated hydrochloric acid in methanol and ketonesl4—16,28a—c,29a—c, and32aa’'—cc'as released
from resin after solvent removal and benzofur@3aa'—
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Procedure for the preparation of titanium benzylidd@and
conversion of esters2 into ketones32 and benzofuran33.

Table 1. Yields? of Ketones32

Ar ORTERP structure of thioaceta#t. This material is available
Rl a,p-MePh b, p-MeOPh ¢’ p-NO,Ph free of charge via the Internet at http:/pubs.acs.org.
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